Sale!

Reinforcement Learning: An Introduction (2nd Edition) – eBook , , ,

eBook details

  • Authors: Richard S. Sutton, Andrew G. Barto, Francis Bach
  • File Size: 7 MB
  • Format: PDF
  • Length: 552 pages
  • Series: Adaptive Computation and Machine Learning series
  • Hardcover: 552 pages
  • Publisher: A Bradford Book; 2nd edition
  • Publication Date: November 13, 2018
  • Language: English
  • ASIN: B008H5Q8VA
  • ISBN-10: 0262039249
  • ISBN-13: 9780262039246

$76.00 $10.00

Please share and get your 10% discount!

Remaining characters: 160

The significantly expanded and updated new 2nd edition of a widely used textbook on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning: An Introduction 2nd edition PDF, Richard Sutton and Andrew Barto provide a simple and clear simple account of the field’s key ideas and algorithms. This 2nd edition has been significantly updated and expanded, presenting new topics and updating coverage of other topics.

– Reinforcement Learning: An Introduction (2nd Edition) PDF – Adaptive Computation and Machine Learning series

Like the 1st edition, this 2nd edition focuses on core online learning algorithms, with the more math material set off in shaded boxes.

Part 1 covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the 2nd edition, including Expected Sarsa, UCB, and Double Learning.

Part 2 extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods.

Part 3 has new chapters on reinforcement learning’s relationships to neuroscience and psychology, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson’s wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Reviews

“Still the seminal textbook on reinforcement learning – the increasingly important technique that underlies many of the most advanced AI systems today. Required reading for anyone seriously interested in the science of AI!” ― Demis Hassabis, Cofounder and CEO, DeepMind

“This is a groundbreaking work, dealing with a subject that you would have expected to have been sorted out right at the start of AI… This isn’t a simple theory but many of the ideas and methods are practically useful and if you have an interest in neural networks or learning systems then you need to study this ebook for the 6 months it deserves!” ― Mike James, Computer Shopper, November 1998

“This ebook is the bible of reinforcement learning, and the new 2nd edition is particularly timely given the burgeoning activity in the field. No one with an interest in the problem of learning to act – researcher, practitioner, student, or curious nonspecialist – should be without it.” ― Professor of Computer Science, University of Washington, and author of The Master Algorithm

“I recommend Sutton and Barto’s new edition of Reinforcement Learning to anybody who wants to learn about this increasingly important family of machine learning methods. This second edition expands on the popular first edition, covering today’s key algorithms and theory, illustrating these concepts using real-world applications that range from learning to control robots, to learning to defeat the human world-champion Go player, and discussing fundamental connections between these computer algorithms and research on human learning from psychology and neuroscience.” ― Tom Mitchell, Professor of Computer Science, Carnegie-Mellon University

“The Reinforcement Learning 2nd edition (PDF) by Sutton and Barto comes at just the right time. The appetite for reinforcement learning among machine learning researchers has never been stronger, as the field has been moving tremendously in the last 20 years. If you want to fully understand the fundamentals of learning agents, this is the textbook to go to and get started with. It has been extended with modern developments in deep reinforcement learning while extending the scholarly history of the field to modern days. I will certainly recommend it to all my college students and the many other graduate students and researchers who want to get the appropriate context behind the current excitement for RL.” ― Yoshua Bengio, Professor of Computer Science and Operations Research, University of Montreal

“Generations of reinforcement learning researchers grew up and were inspired by the 1st edition of Sutton and Barto’s ebook. The 2nd edition is guaranteed to please previous and new readers: while the new edition significantly expands the range of topics covered (new topics covered include artificial neural networks, Monte-Carlo tree search, average reward maximization, and a chapter on classic and new applications), thus increasing breadth, the authors also managed to increase the depth of the presentation by using cleaner notation and disentangling various aspects of this immense topic. At the same time, the new edition retains the simplicity and directness of explanations, thus retaining the great accessibility of the book to readers of all kinds of backgrounds. A fantastic ebook that I wholeheartedly recommend those interested in using, developing, or understanding reinforcement learning.” ― Csaba Szepesvari, Research Scientist at DeepMind and Professor of Computer Science, University of Alberta

NOTE: THIS PRODUCT ONLY INCLUDES THE REINFORCEMENT LEARNING: AN INTRODUCTION 2ND EDITION PDF. NO ONLINE ACCESS OR CODES ARE INCLUDED IN THIS.

Reviews

There are no reviews yet.

Be the first to review “Reinforcement Learning: An Introduction (2nd Edition) – eBook”

Your email address will not be published. Required fields are marked *

You may also like…